skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hering, Susanne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Accurate airborne aerosol instrumentation is required to determine thespatial distribution of ambient aerosol particles, particularly when dealingwith the complex vertical profiles and horizontal variations of atmosphericaerosols. A versatile water-based condensation particle counter (vWCPC) hasbeen developed to provide aerosol concentration measurements under variousenvironments with the advantage of reducing the health and safety concernsassociated with using butanol or other chemicals as the working fluid.However, the airborne deployment of vWCPCs is relatively limited due to thelack of characterization of vWCPC performance at reduced pressures. Giventhe complex combinations of operating parameters in vWCPCs, modeling studieshave advantages in mapping vWCPC performance. In this work, we thoroughly investigated the performance of a laminar-flowvWCPC using COMSOL Multiphysics® simulation coupled withMATLAB™. We compared it against a modified vWCPC (vWCPC model 3789, TSI,Shoreview, MN, USA). Our simulation determined the performance of particleactivation and droplet growth in the vWCPC growth tube, including thesupersaturation, Dp,kel,0 (smallest size of particle that canbe activated), Dp,kel,50 (particle size activated with 50 %efficiency) profile, and final growth particle size Dd underwide operating temperatures, inlet pressures P (30–101 kPa), and growthtube geometry (diameter D and initiator length Lini). Theeffect of inlet pressure and conditioner temperature on vWCPC 3789performance was also examined and compared with laboratory experiments. TheCOMSOL simulation result showed that increasing the temperature difference(ΔT) between conditioner temperature Tcon andinitiator Tini will reduce Dp,kel,0 and thecut-off size Dp,kel,50 of the vWCPC. In addition, loweringthe temperature midpoint(Tmid=Tcon+Tini2) increasesthe supersaturation and slightly decreases the Dp,kel. Thedroplet size at the end of the growth tube is not significantly dependent onraising or lowering the temperature midpoint but significantly decreases atreduced inlet pressure, which indirectly alters the vWCPC empirical cut-offsize. Our study shows that the current simulated growth tube geometry (D=6.3 mm and Lini=30 mm) is an optimized choice forcurrent vWCPC flow and temperature settings. The current simulation can morerealistically represent the Dp,kel for 7 nm vWCPC and alsoachieved good agreement with the 2 nm setting. Using the new simulationapproach, we provide an optimized operation setting for the 7 nm setting.This study will guide further vWCPC performance optimization forapplications requiring precise particle detection and atmospheric aerosolmonitoring. 
    more » « less
  2. Abstract. Particle size measurement in the low nanometer regime is of great importance to the study of cloud condensation nuclei formation and to better understand aerosol–cloud interactions. Here we present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS consists of a novel differential mobility analyzer and a two-stage condensation particle counter (CPC). The mobility analyzer, a radial opposed-migration ion and aerosol classifier (ROMIAC), can classify nanometer-sized particles with minimal degradation of its resolution and diffusional losses. The ROMIAC operates on a dual high-voltage supply with fast polarity-switching capability to minimize sensitivity to variations in the chemical nature of the ions used to charge the aerosol. Particles transmitted through the mobility analyzer are measured using a two-stage CPC. They are first activated in a fast-mixing diethylene glycol (DEG) stage before being counted by a second detection stage, an ADI MAGIC™ water-based CPC. The transfer function of the integrated instrument is derived from both finite-element modeling and experimental characterization. The nSEMS performance has been evaluated during measurement of transient nucleation and growth events in the CLOUD atmospheric chamber at CERN. We show that the nSEMS can provide high-time- and size-resolution measurement of nanoparticles and can capture the critical aerosol dynamics of newly formed atmospheric particles. Using a soft x-ray bipolar ion source in a compact housing designed to optimize both nanoparticle charging and transmission efficiency as a charge conditioner, the nSEMS has enabled measurement of the contributions of both neutral and ion-mediated nucleation to new particle formation. 
    more » « less